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4.1.10 Find the smallest 3-regular graph with connectivity 1.

Solution: We must find the smallest 3-regular graph G with a cut vertex. Since G is
3-regular, we know that n(G) is even. Suppose n ≤ 8. If x is a cut vertex, then G − x
contains a component C with at most three vertices. For y ∈ V (C), dC(y) ≤ 2, but then
either xy ∈ E(G) or zy ∈ E for x 6= z ∈ V (G) − V (C), in either case, x cannot be a cut
vertex. So n ≥ 10. For a ten-vertex three-regular graph with a cut vertex (two, actually),
start with two copies of K4. In each, subdivide one edge by adding a vertex. You now
have eight vertices of degree three, and two of degree two. Insert an edge joining the two
vertices of degree two. The graph is now 3-regular, and the vertices just joined by the
additional edge are both cut vertices. Since no 3-regular graph with connectivity one can
have fewer than ten vertices, and since the graph just constructed is 3-regular, has ten
vertices, and has connectivity one, this is the smallest.

5.1.25 Let G = (V, E) be the unit-distance graph in R2, with V = R2 and xy ∈ E if and only
if d(x, y) = 1 (this is Euclidean distance). Prove that 4 ≤ χ(G) ≤ 7.

Proof: We first prove the lower bound. Take two copies of K4 − e, drawn so that every
edge has unit length and regard these drawings as rigid objects. Call these G1 and G2.
Starting with a vertex of degree two, apply the greedy coloring algorithm to each graph.
The result will be a three-coloring of each in which the vertices of degree two have color
1 and the vertices of degree three are assigned colors 2 and 3. Let x1 and x2 be the
vertices of degree two in G1, and y1, y2 the vertices of degree two in G2. Identify x1 and
y1, to obtain a graph on seven vertices. The vertex obtained by identifying x1 and x2

has degree four, and the remaining vertex degrees are unchanged. Now carefully adjust
the positions of x2, y2 so that d(x2, y2) = 1. We need a new color. Thus χ(G) ≥ 4.

To prove the upper bound, we construct a proper 7-coloring of the unit-distance graph.
To get started, construct a hexagonal “honeycomb” tiling of the plane, using hexagons
of diameter 1, oriented in such a way that each hexagon has two edges parallel to the
horizontal axis. There are “diagonals” of hexagons running southwest to northeast and
northwest to southeast, and columns of hexagons running vertically. Our pallette is the
set {0, 1, . . . , 6}. Choose a hexagon, and assign the color 0 to its interior and its lower edge
(endpoints included). Having assigned a color k to the interior of a particular hexagon,
assign k + 1 (mod 7) to the interior of its neighbor to the northeast, k − 1 (mod 7) to
that of its neighbor to the southeast, k+3 (mod 7) to that of its neighbor above, and k+4
(mod 7) to that of its neighbor below. Horizontal bounding edges (and their endpoints)
take the color of the region immediately above. Colors assigned to diagonal bounding
edges can be taken from either of the adjacent regions. The result is a proper 7-coloring
of the plane such that any two points x, y satisfying d(x, y) = 1 are assigned different
colors. It follows that χ(G) ≤ 7. 2



5.1.26 Given finite sets S1, S2, . . . , Sm, let U = S1×S2×· · ·×Sm. Define G = (U, E) by putting
u ↔ v iff u and v differ in every coordinate. Determine χ(G).

Solution: All vertices that agree in the ith coordinate are pairwise nonadjacent, and
so can have the same color, so we can use the ith coordinate to partition U into i color
classes. It follows that χ(G) = min

i
|Si|.

5.1.33 Prove that every graph G has a vertex ordering relative to which the greedy coloring
algorithm uses exactly χ(G) colors.

Proof: Let G be any graph, and let f be a proper coloring of G using χ(G) colors.
Furthermore, suppose that f has the property that the set of vertices receiving color j
cannot be enlarged without changing the color of a vertex that received some color k > j.
Number the vertices by color class, i.e., first label all vertices receiving color 1, then label
all vertices using color 2, etc. If we now run the greedy algorithm using the constructed
labeling, the algorithm will recreate f . 2

5.1.34 For each k ∈ N, recursively define a tree Tk, of order 2k and having maximum degree
∆(Tk) = k, and an ordering α of V (Tk) such that the greedy coloring with respect to α
uses k + 1 colors. Comment on the effectiveness of the greedy algorithm for arbitrary
graphs.

Solution: We may take T0 = K1, with 1 = 20 vertex and maximum degree ∆ = 0.
Having constructed Tk (k ≥ 0), we construct Tk+1 in the following way: we take two
copies T 1

k and T 2
k of Tk. Label the vertices of T 1

k and T 2
k as v1, . . . , vk in such a way that

the greedy algorithm is forced to use a (k + 1)st color at each of vk and v2k. Now relabel
each vertex of T 2

k by adding k to its previous index, i.e. vi is relabeled as vk+i. The greedy
algorithm is forced to use a (k + 1)st color at vk. Upon arriving at v2k, it is then forced
to use a (k + 2)nd color at v2k. The accompanying illustration shows T2 and T3.
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This indicates that the performance of the greedy algorithm can be arbitrarily bad, since
we can recursively construct 2-colorable graphs (trees are bipartite, hence 2-colorable)
on which the greedy algorithm uses arbitrarily many colors.

5.1.38 Prove that χ(G) = ω(G) if G is bipartite.

Solution: Here are two proofs. Each shows that θ(G) = α(G)
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Proof: Assume that G 6∼= Km,n, since otherwise the problem is trivial. It suffices to show
that θ(G) = α(G). Since an isolated vertex contributes exactly one to both θ(G) and
α(G), we may assume that G has no isolated vertex. Suppose that K is a minimum-
cardinality clique cover of G. Since G is bipartite and has no isolated vertices, every
maximal clique of G is an edge, so θ is also a minimum-cardinality edge cover of G. By
Corollary 3.1.24 (“König’s other theorem”?) in West, θ(G) = α(G), and the proof is
complete. 2

Proof: Assume that G 6∼= Km,n, since otherwise the problem is trivial. It suffices to show
that α(G) = θ(G). We know that α(G) ≤ θ(G), since a maximal clique contributes at
most one vertex to any stable set. We proceed by construction. Let M be a maximum
matching in G. Let UX and UY denote the set of unsaturated vertices in X and Y ,
respectively, and let S denote the set of saturated vertices in X. Since M is maximal, it
follows that I = UX + UY + S is a stable set, with cardinality |I| = |UX | + |UY | + |S|.
Moreover, K = UX +UY +M is a clique cover, since every vertex not in either UX or UY

is incident to an edge in M . Since |S| = |M |, then |K| = |I|, and the result follows. 2

7.2.7 We have a 3 × 3 × 3 block of cheese. A mouse wants to eat the entire thing, by starting
at a corner, eating one 1× 1 subcube at a time, starting a new subcube only if it shared
a face with the subcube just completed, and completing the task by consuming the 1× 1
subcube that was initially at the center. Can the mouse get his wish?

Solution: Nope. Color the subcubes using, say, black and white, so that the corner
subcubes are black and such that subcubes with shared faces receive different colors.
It is easy to see that the resulting coloring produces fourteen black and thirteen white
subcubes. Think of it as a bipartite graph with fourteen black vertices and thirteen white
vertices. The center vertex representing the subcube that the mouse wants to eat last is
white. So the mouse plans to follow a Hamiltonian path from a black vertex to a white
vertex, but such a path cannot exist unless the numbers of black and white vertices are
equal. 2

7.2.17 Prove that the Cartesian product of two Hamiltonian graphs is Hamiltonian. Conclude
that the cube Qk is Hamiltonian when k ≥ 2.

Proof: Let H1 = (V1, E1) and H2 = (V2, E2) be Hamiltonian graphs, and assume that
V1 = {x1, x2, . . . , xn} and V2 = {y1, y2, . . . , ym}. Let P1 and P2 be Hamiltonian paths in
H1 and H2, respectively. Permute labels, if needed, so that P1 has initial point x1 and
terminal point xn, and P2 has initial point y1 and terminal point ym. Then it is easy to
see that P1, xny1, P2, ymx1 is a Hamiltonian cycle in G = H12H2. 2

Since Q2 is Hamiltonian, it follows from the preceding result, and from the fact that
Qk = Qk−12Qk−1, that Qk is Hamiltonian for all k ≥ 2.
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